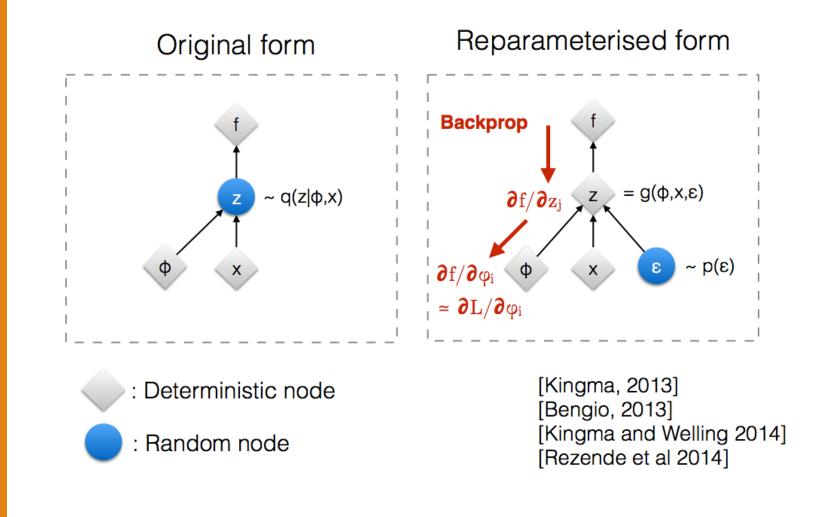
Reparameterization trick



UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES – 1

Backpropagating VAE parameters $\boldsymbol{\varphi}, \boldsymbol{\theta}$

• Backpropagation \rightarrow compute the gradients with respect to θ and φ $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(z|x)||p(z))$

Backpropagating w.r.t.

• Backpropagation \rightarrow compute the gradients with respect to θ and φ $\mathcal{L}(\theta, \varphi) = \mathbb{E}_{z \sim q_{\varphi}(z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\varphi}(z|x)||p(z))$

- The expectation and sampling in $\mathbb{E}_{z \sim q_{\varphi}(z|x)}$ do not depend on θ • \rightarrow The gradient goes inside the expectation $\nabla_{\theta} \mathcal{L} = \mathbb{E}_{z \sim q_{\varphi}(z|x)} [\nabla_{\theta} \log p_{\theta}(x|z)]$
- Also, the KL does not depend on θ , so no gradient from over there!
- Just Monte-Carlo integration with samples z drawn from $q_{\varphi}(z|x)$

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\varphi}) = \mathbb{E}_{\boldsymbol{z} \sim q_{\boldsymbol{\varphi}}(\boldsymbol{z} | \boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x} | \boldsymbol{z})] - \mathrm{KL}(q_{\boldsymbol{\varphi}}(\boldsymbol{z} | \boldsymbol{x}) \parallel p(\boldsymbol{z}))$$

- The sampling *z*~*q*_φ(*z*|*x*) depends on the parameters φ
 And, sampling is not a differentiable operation
 → No gradients
- Monte Carlo not even possible

$$\nabla_{\boldsymbol{\varphi}} \mathbb{E}_{\boldsymbol{z} \sim q_{\boldsymbol{\varphi}}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})] = \int_{\boldsymbol{z}} \nabla_{\boldsymbol{\varphi}} [q_{\boldsymbol{\varphi}}(\boldsymbol{z}|\boldsymbol{x})] \log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}) d\boldsymbol{z}$$

- $\circ \rightarrow$ no density to sample from
- $\nabla_{\varphi}[q_{\varphi}(z|x)]$ is the gradient of a density function
- $\log p_{\theta}(x|z)$ is the logarithm of a density function
- How to turn the expression into Monte Carlo friendly?

- Remember, we have a Gaussian output $z \sim N(\mu_Z, \sigma_Z)$
- For certain pdfs, including the Gaussian, we can rewrite their random variable
 z as deterministic transformations of an auxiliary and simpler random variable ε

$$z \sim N(z; \mu_z, \sigma_z) \iff z = \mu + \varepsilon \cdot \sigma, \qquad \varepsilon \sim N(0, 1)$$

- Because of change of variables: $q(z)dz = q(\varepsilon)d\varepsilon$
- And, ε is an 'external' random variable
- Remember: μ_z, σ_z are deterministic (<u>not random</u>) values
 The outputs of the encoder neural networks

• We can rewrite our gradient

$$\nabla_{\varphi} \mathbb{E}_{z \sim q_{\varphi}(z|x)} [\log p_{\theta}(x|z)] = \nabla_{\varphi} \int_{z} \log p_{\theta}(x|z) q_{\varphi}(z|x) dz$$

$$= \nabla_{\varphi} \int_{\varepsilon} \log p_{\theta} (x|\mu_{z,\varphi}, \sigma_{z,\varphi}, \varepsilon) q(\varepsilon) d\varepsilon$$

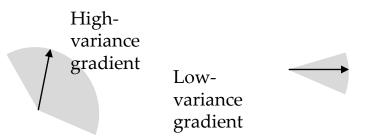
$$= \int_{\varepsilon} \nabla_{\varphi} \log p_{\theta} (x|\mu_{z,\varphi}, \sigma_{z,\varphi}, \varepsilon) q(\varepsilon) d\varepsilon$$

$$\approx \sum_{k} \nabla_{\varphi} \log p_{\theta} (x|\mu_{z,\varphi}, \sigma_{z,\varphi}, \varepsilon_{k}), \varepsilon_{k} \sim N(0, 1)$$

Where ϕ are the parameters of the encoder networks μ_z , σ_z

• The sampling in MC integration does not depend on ϕ anymore

- Sampling directly from $\varepsilon \sim N(0,1)$ leads to low-variance estimates compared to sampling directly from $z \sim N(\mu_Z, \sigma_Z)$
- o Remember: we are sampling for *z* → we are also sampling gradients
 o Stochastic gradient estimator
- More distributions beyond Gaussian possible
 - Laplace, Student-t, Logistic, Cauchy, Rayleight, Pareto

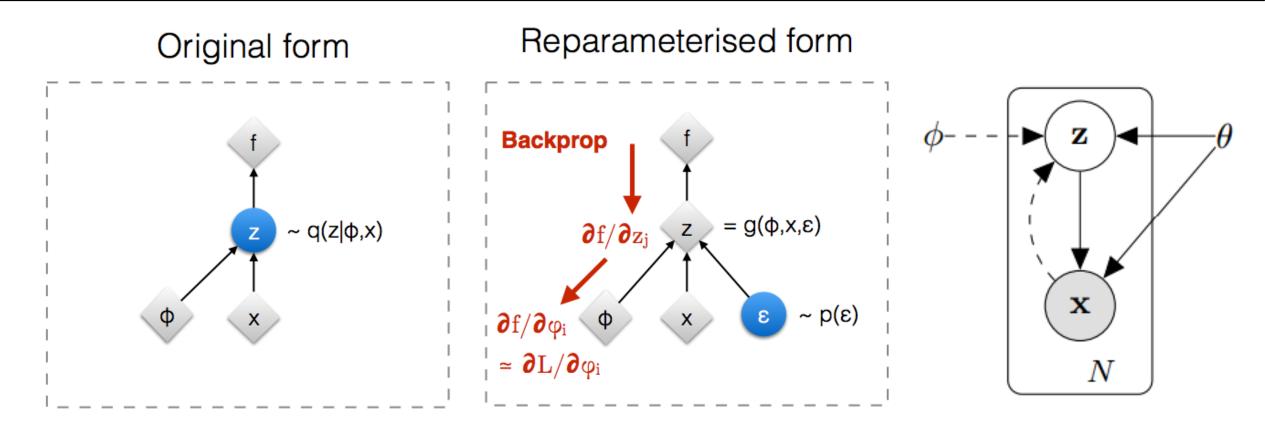


http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

What exactly happened?

- Again, the latent variable is $\mathbf{z} = \boldsymbol{\mu}_{\mathbf{z}} + \boldsymbol{\varepsilon} \cdot \boldsymbol{\sigma}_{\mathbf{z}}$
- μ_z and σ_z are deterministic functions (the neural networks)
- *ε* is a random variable, which comes **externally**
 - The z as a result is itself a random variable, because of ε
- However, now the randomness is <u>not associated</u> with the neural network and its parameters that we have to learn
 - \circ The randomness instead comes from the external ε
 - \circ The gradients flow through μ_z and σ_z

Reparameterization Trick (graphically)



- : Deterministic node
- : Random node

[Kingma, 2013] [Bengio, 2013] [Kingma and Welling 2014] [Rezende et al 2014]

VAE Training Pseudocode

Data:

 \mathcal{D} : Dataset $q_{\phi}(\mathbf{z}|\mathbf{x})$: Inference model $p_{\theta}(\mathbf{x}, \mathbf{z})$: Generative model **Result**: θ, ϕ : Learned parameters $(\theta, \phi) \leftarrow$ Initialize parameters while SGD not converged do $\mathcal{M} \sim \mathcal{D}$ (Random minibatch of data) $\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon})$ (Random noise for every datapoint in \mathcal{M}) Compute $\tilde{\mathcal{L}}_{\theta,\phi}(\mathcal{M},\epsilon)$ and its gradients $\nabla_{\theta,\phi}\tilde{\mathcal{L}}_{\theta,\phi}(\mathcal{M},\epsilon)$ Update θ and ϕ using SGD optimizer The ELBO's gradients end

UVA DEEP LEARNING COURSE EFSTRATIOS GAVVES – 11

- Latent variable models
- Autoencoders
- Variational inference
- Variational autoencoders
- Reparameterization trick

Reading material:

• All papers mentioned in the slides